
�

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

 partially broken CRHF such as SHA-1, a (hopefully) better
 collision-resistant family such as SHA2, or any hash function to be

 designed in the future.

 While the above indicates general relations between the strengths
 and vulnerabilities of different hashing tasks it does not tell us
 how to instantiate a TCR function. We discuss this in the next

 section. Later, in section 4, we explain how to integrate
 randomized hashing into signatures (specifically, how to sign and
 transport the index r).

3. A TCR Construction for Iterated Hash Functions

 We propose a specific way to convert a single hash function H
 (e.g SHA-1 or SHA2) into a TCR function family. The design

 principles that we follow are:

 (1) Do not change H: randomization is applied to the hash input
 before the hash function is called.
 (2) Minimize performance impact.
 (3) Increase (heuristically) the likelihood of resistance of the

 family to TCR attacks.

 In 3.1 we present a basic construction (with some heuristic
 rationale in Appendix A). In 3.2 we list some variants which take
 into account some further trade-offs between performance and
 plausible security. We stress that these methods, although

 plausible, need to be scrutinized further before they can be
 adopted.

3.1 A simple randomized hash construction

 Let H be a hash function that processes the message to be hashed in
 512-bit blocks. For example, if H is an integrated hash function

 a-la-Merkle-Damgard then the underlying compression function has as
 inputs an IV and a 512-bit data input. (We use 512 bits as the
 typical block size but other values are possible.) Let XOR denote
 the bit-wise exclusive-or operation.

 Given a message m to be hashed, the signer (or "hasher") chooses a

 512-bit random value r, and XORs each 512-bit block of m with r.
 (If m is not an exact multiple of 512-bit blocks then the shorter
 last block is XORed with an appropriately truncated r.)
 In other words, we concatenate r to itself until we get a string r*

 of the same length of m, and then compute m XOR r*.
 We define H_r(m) to be H(m XOR r*).

 Note: By our definition the result of (m XOR r*) is of the same
 length as m; therefore, the length padding defined by Merkle-Damgard

 functions such as SHA-1 is applied to (m XOR r*). In other words,
 the length padding is not subject to the XOR with r*.

Halevi and Krawczyk [Page 6]

�

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

 In Appendix A we provide some rationale on the choice of this
 particular way of converting iterated hash functions into TCR.

 Variants of this method are presented next.

3.2 Some Randomized Hash Variants

 A possible strengthening of our construction from Sec 3.1 can be
 obtained if, in addition to XORing each block of input with the
 value r, one also prepends r to the input to H, i.e., the input to H

 consists of the block r concatenated with (m XOR r*). This provides
 a randomizing effect to the initial IV of H (in the spirit of the
 HMAC construction).

 An even more conservative variant could interleave the block r
 between any two blocks of the original message, thus providing an IV

 randomization feature for each application of the compression
 function. The obvious drawback is the added computation (double the
 cost of the original hash function).

 Another natural idea is to add a layer of security by XORing a

 different random pad to each block of the message. Clearly, this
 adds a non-trivial computational cost (one would need to generate a
 pad of the length of the message via some PRG). A midway strategy
 could be to start with a pad of the length of a single block and

 slightly (and inexpensively) change this pad for each new block of
 input, for example by applying circular byte rotation to the
 previous block pad. A similar idea would be to derive the pad from a
 byte-oriented LFSR whose initial value is the key r.

 Finally, if the generation of a 512-bit random (or pseudo-random)

 quantity r for each signature is regarded as expensive (possibly
 true for low-power devices, smart cards, etc.) then it is possible
 to define r as the concatenation of a shorter pad. For example, in
 order to define r one could choose a random 128-bit string and

 concatenate it four times to create r. Given the heuristic nature of
 our constructions this may be considered a reasonable trade-off.

4. TCR Hashing and Signature Encoding

 Recall how randomized hashing is to be used in the context of digital
 signatures. For signing a message m, the signer chooses at random a

 value r and computes SIG(r,H_r(m)) where SIG represents a signing
 algorithm (such as RSA or DSS). More precisely, the signer will use
 a well-defined standard encoding of the concatenation of the values
 r and H_r(m) and then apply algorithm SIG to this encoding.

 The signature on message m consists of the pair (r,SIG(r,H_r(m)).

 The above requires changing current signature schemes in four ways:

 (1) Choosing a random (unpredictable) index r for each signature,
 (2) Replacing the current hashing of a message m from H(m) to H_r(m),
 (3) Signing r, and
 (4) Transporting r as part of the signature.

Halevi and Krawczyk [Page 7]

�

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

 Here we discuss the required changes to existing message encodings
 for implementing the last 3 points. We focus on the two main

 algorithms in use: RSA and DSS. We note that while changing existing
 encoding standards may be one of the possible obstacles to adopting
 randomized hashing, this change is instrumental in allowing for more
 secure and robust signature schemes not only in the short term but

 in the farther future as well. We suggest that this change to the
 standards be specified and adopted as soon as possible. As we see
 below, these changes can be specified in a way that is independent
 of the specific randomized hash function to be used.

 We start with RSA. The most common encoding in use with RSA
 signatures is PKCS#1 v1.5. It specifies that given a message m to be
 signed, the input to the RSA signature function is a string composed
 of the hash value H(m) (computed on the message m using a

 deterministic hash function such as SHA-1) which is padded to the
 length of the RSA modulus with a standard deterministic padding
 (this padding contains information to identify the hash algorithm in
 use). This encoding can be extended to deal with randomized hashing

 as follows. First, the value H(m) is replaced with H_r(m) for r
 chosen by the signer. Second, part of the deterministic padding
 (which is currently filled with repeated 0xff octets) is replaced
 with the value of r. In this way, r is signed and, at the same time,

 it is made available to the verifier of the signature without any
 increase in the size of signatures (r is recovered by the verifier
 by inverting the signature operation).

 Another RSA encoding, called EMSA-PSS, is standardized by PKCS#1 v2.1
 and is based on the randomized signature scheme of Bellare and

 Rogaway [BR96]. Unfortunately, the standard defines an encoding in
 which the first step is to apply a deterministic hash function (say,
 SHA-1) to the message m. Only then the randomized encoding scheme of
 PSS is applied. As a result, the signature scheme that uses EMSA-PSS

 is broken if the hash function is not fully collision resistant.
 In order to use this scheme with randomized hashing, one would
 replace the current H(m) value in the encoding with H_r(m) and the
 value r would be encoded in a way that the verifier of a signature

 can recover it before applying the randomized hashing. The original
 PSS scheme from [BR96] can be used, or adapted, to achieve such an
 encoding.

 Two points to remark regarding the applicability of PSS here are:
 first, the original PSS scheme is patented -- see US Patent 6266771

 (which may or may not be an obstacle for adoption). Second, the
 main analytical benefit of PSS is its provability based on the so
 called "random oracle model". While this provides a good heuristic
 backing to the construction, one has to take into account that here

 we are dealing explicitly with lowering the security requirements
 from the hash function, so it is questionable how random-like these
 functions may be required to be. Formal proofs aside, the PSS scheme
 offers good heuristic advantages over the PKCS#1 v1.5 in that it

 better randomizes the input to the RSA signing algorithm.

Halevi and Krawczyk [Page 8]

�

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

 Regarding the DSS (or DSA) signature algorithm, the first thing to
 note is that this is already a randomized signature scheme.

 A DSS signature is composed of a pair of elements (R,S) where R is a
 random element in the DSS group and S is a value computed as a
 function of the private key of the signer, the discrete logarithm of
 R (denoted k), and the value H(m) (where m is the message to be

 signed and H a deterministic hash function). In order to convert
 this scheme to use randomized hashing one can use R itself as the
 index to the hash family, i.e., r=R (or to derive r from R in some
 deterministic way). Then one would replace H(m) with H_r(m).

 In this way the size of signatures is unchanged and no further
 processing is required to generate r. Also note that while the
 signature component R is not strictly "signed", the attacker cannot
 control or choose this value (indeed, an attack that finds values R

 and S for which (R,S) are a valid signature of H_R(m), for a value
 H_R(m) not signed by the legitimate signer, would contradict the
 basic security of DSS). One may argue that the use of H_r(m) instead
 of H(m) can be viewed as an "implementation" of the random-oracle

 version of DSS as analyzed by Pointcheval and Stern [PS96]; the same
 caveats expressed in the case of PSS in relation to the use of the
 random oracle model apply here as well.

 One consideration in regards to using the component R of DSS

 signatures as the index to the randomized hash family is that,
 in order to ensure the TCR property, this index needs to be unknown
 (unpredictable) to the attacker when the latter chooses the message
 m to be signed. If the value of R is computed off-line by the signer

 (which is possible in the case of DSS) and is leaked before the
 attacker choses m then the benefit of randomized hashing is lost.
 Hence, R=g^k should be kept secret together with k until the
 signature is issued. This is not a fundamental limitation to the

 practice of DSS since the DSS scheme already requires (in an
 essential way) that k be kept secret, even if computed off-line,
 since its discovery by the attacker is equivalent to finding the
 secret private key of the signer!

5. Security Considerations

 This document presents mechanisms that, if adopted by standard

 bodies such as the IETF, will result in significant improvements to
 our current and future digital signature systems. While this
 document focuses on randomized modes of operation of hash functions
 that provide randomized hashing without changing existing

 algorithms, it is advisable that future hash families will be
 designed with randomized hashing and TCR requirements in mind.
 For example, new schemes that follow the Merkle-Damgard approach may
 consider allowing for the masking of intermediate values with

 optional user provided inputs (that is, such a mask could be set to
 a default value, say 0, for deterministic uses of the hash function,
 and to user-provided values when randomization is desired). The
 important point is that implementations of the function will be

 ready to accept such masks without having to change the function.

Halevi and Krawczyk [Page 9]

�

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

 We note that all references to "randomness" in this document should
 be interpreted as "pseudo-randomness" provided one uses a

 cryptographically strong pseudorandom generator (or pseudo-random
 function) initialized with a strong unpredictable seed.

 We also mention that using TCR hashing may mean that the legitimate
 signer can find two messages with the same signature (since it is

 the legitimate signer that is choosing the randomness r). One should
 note, however, that this has no bearing on non-repudiation (as the
 signer is still bound to both messages). Moreover, as shown in
 [SPMS02], even if one uses CRHF some secure signature schemes (such

 as ECDSA) may allow a signer to find two different messages whose
 signature string is the same. Still, as mentioned at the end of the
 Introduction, there may be OTHER applications of CRHF that cannot be
 replaced with a TCR family.

 Finally, the general approaches to randomized hashing and digital

 signatures discussed here do not depend on the specifics of the
 concrete constructions that we proposed here. Other forms of
 randomized hashing and TCR schemes may be superior to the ones
 proposed here and further proposals are encouraged.

ACKNOWLEDGMENT. We thank Ran Canetti for useful discussions and for

 badgering us to write this document.

REFERENCES

 [BR96] M. Bellare and P. Rogaway, "The Exact Security of Digital
 Signatures -- How to Sign with RSA and Rabin", Eurocrypt'96,
 LNCS 1070, 1996.

 [BR97] M. Bellare and P. Rogaway, "Collision-Resistant Hashing:
 Towards Making UOWHFs Practical", Crypto'97, LNCS 1294, 1997

 [HPL04] D. Hong, B. Preneel, and S. Lee, "Higher Order Universal

 One-Way Hash Functions", Asiacrypt'04, LNCS 3329, 2004.

 [NY89] M. Naor and M. Yung, "Universal One-Way Hash Functions and
 Their Cryptographic Applications", STOC'89, 1989.

 [PS96] D. Pointcheval and J. Stern, "Security Arguments for Digital
 Signatures and Blind Signatures", J.Cryptology, 13:361-396,

 2000.

 [S00] V. Shoup, "A Composite Theorem for Universal One-Way Hash
 Functions", Eurocrypt'00, LNCS 1807, 2000.

 [SPMS02] Jacques Stern, David Pointcheval, John Malone-Lee, and
 Nigel P. Smart, "Flaws in Applying Proof Methodologies to

 Signature Schemes", CRYPTO '2002, LNCS 2442, 2002.

Halevi and Krawczyk [Page 10]

�

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

Appendix A - Rationale for the Proposed TCR Construction(s)

 Our TCR proposals follow the following principles:

 (1) Allow the use of existing functions such as SHA-1 and SHA2

 (in particular, iterated hash functions a la Merkle-Damgard).
 (2) Do not change the hash function but only the interface to it
 (e.g., in our proposal randomization is achieved via the input
 to the function and therefore implemented hash functions, in

 either software or hardware, can be used without modification).
 (3) Use as weak as possible properties of the compression function
 underlying the hash construction.

 Our construction is general enough to be used with any hash function
 that processes the incoming data as blocks. Yet, we focus in our

 discussion here on Merkle-Damgard (M-D) type of hash functions since
 these are the most common schemes in practice.

 While (1) and (2) are obvious properties of our suggested
 construction we elaborate here on point (3). Ideally, we would have

 liked to provide a mathematical theorem proving the security of our
 construction using only relatively weak requirements from the
 underlying compression function. While such theorems exist for some
 specific constructions (e.g., [BR97,S00]), they all include

 operations that violate the principle of using the existing hash
 functions without any change (e.g., masking the intermediate value of
 the compression function with each call to this function). We thus
 settle for a heuristic rationale that should be scrutinized in light

 of the evolving ideas in the area of hash function cryptanalysis.

 Let H be a M-D function (the reader can think of SHA-1 for
 concreteness) and h be the corresponding compression function.
 That is, h acts on two inputs, a and b, where a represents an
 intermediate value (IV) and b is a 512-bit block, and the output

 of h is of the length of the IV (IV lengths vary with different
 constructions, e.g., 160, 256, etc.). The function H itself is
 defined for arbitrary inputs by iterating h over the successive
 blocks of the input with each iteration using the IV computed by the

 previous application of h (the first IV is set to some constant
 defined by the specification of H).

 Consider now a family of compression functions derived from h as
 follows: for each 512-bit index r, define h_r(a,b)=h(a,b XOR r).
 It is easy to see that iterating h_r as in a M-D construction one

 obtains the function H_r that we defined in 3.1.

 Merkle and Damgard showed that if a compression function h is
 collision resistant with respect to fixed-length inputs, then the
 function H obtained by iterating h is collision resistant on

 arbitrary inputs. We would like to claim the same with respect to
 the property of target-collision resistance (TCR), namely, that if
 h is TCR so is H. This, however, is not necessarily the case.

Halevi and Krawczyk [Page 11]

�

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

 Yet, an "approximation" to this result was recently shown by Hong,
 Preneel and Lee [HPL04]. They show that if the construction h_r has

 a property called "n-order TCR" then the iterated family H_r is TCR
 for messages of up to n blocks. The property of n-order TCR is
 defined by the following game between Alice (the Attacker) and a
 "hasher" Bob.

 (1) Bob chooses an index r and keeps it secret.
 (2) For i=1,...,n: Alice chooses a pair (a_i,b_i) and receives from
 Bob the value h_r(a_i,b_i).
 (3) Alice chooses a pair (a,b).

 (4) Bob reveals r to Alice
 Alice wins the game if she can find (a',b') different from (a,b)
 such that h_r(a,b)=h_r(a',b').

 In other words, Alice needs to carry a TCR attack but she is
 allowed to query h_r on n inputs of her choice before committing to

 the first colliding message and before learning the value of r.
 Intuitively, the difference with a regular TCR attack is that Alice
 has now an advantage in choosing (a,b) since she can first learn
 something about r from the first n queries.

 A family h is called n-order TCR if any efficient attacker (Alice)

 can only find (a',b') as above with insignificant probability.
 Before we continue it is important to clarify that the above game
 defining n-order TCR functions is not a game that reflects an actual
 interaction between an attacker and a victim in real life but it is

 only a virtual game used to define the security of a function.

 How much does the extra phase (2) in the game from above help Alice
 to find collisions? This of course depends on the specific function,
 and to some extent also on the value of n. Note that if one lets n

 to be huge (say 2^80 in the case of SHA-1) then Alice can use this
 "learning phase" to find colliding pair (a_i,b_i) and (a_j,b_j) that
 she can then use as (a,b) and (a',b') respectively. But recall that
 n represents the length in blocks of the messages to be hashed with

 the iterated construction, so it will typically be quite small.
 (I.e., n=4 or so in the case of certificates, and n < 2^30 even for
 huge documents.) Hence one may hope that the learning phase will
 not be sufficiently useful for Alice to choose the colliding pair.

 In other words, while in order to break a collision-resistant hash

 function an attacker can spend a HUGE amount of OFF-LINE computation
 for finding collisions, for breaking an n-order TCR function the
 attacker is limited to only MODERATE ON-LINE interaction with the
 hasher after which it needs to commit to a first colliding value x.

 Only then the attacker receives the actual value r for which it
 needs to find x' such that h_r(x)=h_r(x').

 We also comment that the common view of the compression function
 h(a,b) as a block cipher with key b and input a gives rise to another
 heuristic argument supporting the view of h_r as n-order TCR.

 Viewing h(a,b) as a block cipher, phase (2) of the attack from above

Halevi and Krawczyk [Page 12]

�

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

 on h_r is just a chosen-plaintext related-key attack on the block
 cipher h. If h resists such attacks with a moderate number of

 queries, then phase (2) does not help the attacker learn much about
 r. Hence, if h is both TCR and a sufficiently robust block cipher,
 then it is also an n-order TCR.

 As said, [HPL04] show that if a compression family h={h_r} is

 n-order TCR then the family H={H_r} is TCR on n block inputs
 (here H_r is a Merkle-Damgard iteration of h_r). Applying this
 result to our case, we obtain that if the construction
 h_r(a,b) = h(a, b XOR r) is an n-order TCR then the family H_r

 described in 3.1 is TCR for n-block inputs.
 In other words, any TCR attack against the family H_r that uses
 n-block messages, translates into an n-order TCR attack against the
 compression function family h_r with only n initial oracle queries.

 This provides some foundation to the belief that even the existing

 hash functions are significantly more secure in the sense of TCR
 than for collision resistance when used as specified here.
 In addition, one should examine the current attacks and see to what
 extent they apply to the defined functions. In particular, we note

 that the XORing of input blocks with a random block, while it
 preserves differentials, it also destroys the ability of the
 attacker to set some of the bits of the colliding messages to values
 of its choice. It seems that an attack that takes advantage of

 differentials in this setting would need to rely on universal
 differentials that depend only on the hash function and for which
 most pairs of messages with that difference would collide.

 Finally, we point out to another "motivating" element in our design.
 Remember that SPR (second pre-image resistant) functions are a weaker

 (i.e., easier to accomplish) version of TCR functions where the
 attacker cannot choose the first colliding value but rather this
 value is determined at random. A straightforward way to transform
 an SPR compression function h into a TCR family [S00] is to choose a

 pair r=(s1,s2), where s1,s2 are random values of the length of the
 IV and block size, respectively, and define
 h_r(a,b)=h(a XOR s1, b XOR s2). Unfortunately, iterating such an
 h_r is impractical as it requires modifying H such that the IV can

 be XORed with S1 in each iteration of h. Therefore, instead of
 using this full transformation of SPR into TCR we carry the
 randomization only in the second input of h, namely, in our
 construction in 3.1 we use h_r(a,b)=h(a,b XOR r) (when viewing h as

 a block cipher, as mentioned before, the XORing with r provides for
 randomization of the cipher key).

Halevi and Krawczyk [Page 13]

�

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

Authors' Addresses

 Shai Halevi
 shaih@alum.mit.edu
 Hugo Krawczyk
 hugo@ee.technion.ac.il

 IBM T.J. Watson Research Center
 19 Skyline Drive
 Hawthorne, NY 10532
 USA

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors

 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR
 IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Halevi and Krawczyk [Page 14]

